Skip to main content
Version: I2023.2.0

About Dimension Attributes

A dimension attribute represents a single data element in the dimension, and is linked to one or more columns of an underlying dataset. There are two kinds of dimension attributes: level attributes and secondary attributes.

Level Attributes

Level attributes are those that are associated with a particular hierarchy. Every hierarchy has a key level attribute, which is the most granular representation of the dimension's data. Only level attributes can be used to define relationships between datasets and other dimensions.

For example, in this Geography dimension hierarchy, there are four level attributes (Country, State, City, and GeoKey), which are each associated with one or more underlying data columns.

image

Secondary Attributes

Dimension attributes that are not the dimension's key, and not a level of a hierarchy are called secondary attributes. For example, Gender and Birth Date are attributes about a user, but they don't make sense as part of a hierarchy.

A secondary attribute cannot be used to define relationships, but the level they are connected to can be.

note

Note: As of AtScale 2021.3.0 it is possible to build tabular reports that use hierarchy-specific calculations, such as Time Calculations, without specifying the Hierarchy in the report or query. See the Level Alias documentation for more information.

image

Using Dimension Attributes in Calculated Measures

You can evaluate dimension attribute values in a calculated measure formula. Doing so is useful for conditional processing of measure values based on the value of a given dimension attribute. For more information, including the syntax to use, see CURRENTMEMBER.NAME in AtScale's MDX reference.